How not to generate
random numbers

Nadia Heninger

University of Pennsylvania

June 15, 2018

A crash course in cryptographic protocols

AESk(m)

A crash course in cryptographic protocols

AESk(m)

k = KDF(g) k = KDF(g™)

A crash course in cryptographic protocols

ga
gb

RSApubg, Sig”B(gaygb)
AESk(m)

AN

k = KDF(g) k = KDF(g™)

A crash course in cryptographic protocols

random rg, g9

random ry, g°

RSApubyg, Signg(g9,8%, ra, rp)
AESk(m)

AN

k = KDF(g) k = KDF(g™)

A crash course in cryptographic protocols

random r,, g9

random ry, g°

RSApubg, Signg(g?,8°, ra, rp)
AESk(m)

AN

k = KDF(g) k = KDF(g™)

“Any one who considers arithmetical methods of pro-
ducing random digits is, of course, in a state of sin.”

-John von Neumann

Cryptographic pseudorandomness in theory

Definition

A pseudorandom generator is a polynomial-time deterministic
function G mapping n-bit strings into ¢(n)-bit strings for

¢(n) > n whose output distribution G(U,) is computationally
indistinguishable from the uniform distribution Uyp.

Environmental
entropy ,—> Crypto keys

Cryptographic pseudorandomness in theory

Definition

A pseudorandom generator is a polynomial-time deterministic
function G mapping n-bit strings into ¢(n)-bit strings for

¢(n) > n whose output distribution G(U,) is computationally
indistinguishable from the uniform distribution Uyp.

Environmental
entropy ,—> Crypto keys

Problem: Environmental entropy not uniformly distributed.

Cryptographic pseudorandomness in theory

Definition

A pseudorandom generator is a polynomial-time deterministic
function G mapping n-bit strings into ¢(n)-bit strings for

¢(n) > n whose output distribution G(U,) is computationally
indistinguishable from the uniform distribution Uyp.

Environmental Crvbto kevs
entropy —| Extractor |—| G|——> Cryp y

NIST SP800-90A

“Random Number Generation using Deterministic Random Bit Generators”

Consuming Application

Personalization String Additional Input

Nomce Eniropy Input

= L 1

Pseudorandom Ouiput

| |
|
} Instantiake Reseed i
| Function Function I
| i
| |
! |
| |
|
1 Uninstantiaie | Generaie !
: Function R Function :
I
| i
| |
1 s !
] _ |
| N N |
i AT 1
1 |

Figure 1: DRBG Functional Model

Practical Considerations with RNGs

e Problem: Inputs might not be random.

Practical Considerations with RNGs

e Problem: Inputs might not be random.
Solution: Test for randomness.

Practical Considerations with RNGs

e Problem: Inputs might not be random.
Solution: Test for randomness.

e Problem: Testing for randomness is theoretically
impossible.

Practical Considerations with RNGs

e Problem: Inputs might not be random.
Solution: Test for randomness.

® Problem: Testing for randomness is theoretically
impossible.
Solution: ... do as well as you can?

Practical Considerations with RNGs

e Problem: Inputs might not be random.
Solution: Test for randomness.

® Problem: Testing for randomness is theoretically
impossible.
Solution: ... do as well as you can?

e Problem: Inputs might be controlled by attacker.

Practical Considerations with RNGs

e Problem: Inputs might not be random.
Solution: Test for randomness.

® Problem: Testing for randomness is theoretically
impossible.
Solution: ... do as well as you can?

e Problem: Inputs might be controlled by attacker.
Solution: Seed from a variety of sources and hope
attacker doesn't control everything.

Practical Considerations with RNGs

e Problem: Inputs might not be random.
Solution: Test for randomness.

® Problem: Testing for randomness is theoretically
impossible.
Solution: ... do as well as you can?

e Problem: Inputs might be controlled by attacker.
Solution: Seed from a variety of sources and hope
attacker doesn't control everything.

® Problem: User might request output before seeding.

Practical Considerations with RNGs

e Problem: Inputs might not be random.
Solution: Test for randomness.

® Problem: Testing for randomness is theoretically
impossible.
Solution: ... do as well as you can?

e Problem: Inputs might be controlled by attacker.
Solution: Seed from a variety of sources and hope
attacker doesn't control everything.

® Problem: User might request output before seeding.
Possible solutions:
1. Don't provide output.
2. Provide output.
3. Raise an error flag.

Disaster 1: Debian OpenSSL

Luciano Bello, 2008

When Private Keys are Public: Results from the 2008 Debian
OpenSSL Vulnerability Yilek, Rescorla, Shacham, Enright,
Savage. (2009)

Underlying cause: Failure to seed PRNG.

OpenSSL PRNG

Seed: /dev/urandom, pid, time()

Update: time() (in seconds)

Mixing function: SHA-1

Output: SHA-1 hash of state.

/* state[st_idx], ..., state[(st_idx + num - 1) % STATE_SIZE]
* are what we will use now, but other threads may use them
* as well */

md_count[1] += (num / MD_DIGEST_LENGTH) + (num % MD_DIGEST_LENGTH > 0);
if (!'do_not_lock) CRYPTO_w_unlock(CRYPTO_LOCK_RAND);

EVP_MD_CTX_init (&m) ;
for (i=0; i<num; i+=MD_DIGEST_LENGTH)
{
j=(num-i);
j=(j > MD_DIGEST_LENGTH)?MD_DIGEST_LENGTH:j;

MD_Init (&m);
MD_Update (&m,local_md,MD_DIGEST_LENGTH) ;
k=(st_idx+j)-STATE_SIZE;
if (k > 0)
{
MD_Update (&m,&(state[st_idx]),j-k);
MD_Update (&m,&(state[0]) ,k);
i3
else
MD_Update (&m,&(state[st_idx]),j);

MD_Update (&m,buf,j) ;

MD_Update (&m, (unsigned char *)&(md_c[0]),sizeof(md_c));
MD_Final(&m,local_md);

md_c[1]++;

buf=(const char *)buf + j;
for (k=0; k<j; k++)
{
/* Parallel threads may interfere with this,
* but always each byte of the new state is

* the XOR of some previous value of its
* and local md (itermediate values may be lost).

List: openssl-dev

Subject: Random number generator, uninitialised data and valgrind.
From: Kurt Roeckx <kurt () roeckx ! be>

Date: 2006-05-01 19:14:00

Hi,

When debbuging applications that make use of openssl using
valgrind, it can show alot of warnings about doing a conditional
jump based on an unitialised value. Those unitialised values are
generated in the random number generator. It’s adding an
unintialiased buffer to the pool.

The code in question that has the problem are the following 2
pieces of code in crypto/rand/md_rand.c:

247:
MD_Update (&m,buf, j) ;

467:
#ifndef PURIFY

MD_Update (&m,buf,j); /* purify complains */
#endif

What I currently see as best option is to actually comment out
those 2 lines of code. But I have no idea what effect this
really has on the RNG. The only effect I see is that the pool
might receive less entropy. But on the other hand, I’m not even
sure how much entropy some unitialised data has.

What do you people think about removing those 2 lines of code?

Kurt

Defenses

e Possible to automatically detect unseeded PRNGs in
source code in some circumstances. [Dorre Klebanov

2016]

¢ How to make more rigorous?

Disaster 2: Shared RSA factors

Mining your Ps and Qs: Widespread Weak Keys in Network
Devices Nadia Heninger, Zakir Durumeric, Eric Wustrow,
and J. Alex Halderman Usenix Security 2012

Public Keys Arjen K. Lenstra, James P. Hughes, Maxime
Augier, Joppe W. Bos, Thorsten Kleinjung, and Christophe
Wachter Crypto 2012

Weak keys remain widespread in network devices Marcella
Hastings, Joshua Fried, and Nadia Heninger IMC 2016

Underlying cause: Failure to seed PRNG.

RSA and factoring

Public Key Private Key
(N=pg.e) (p,q,d=e""mod (p—1)(g 1))

RSA and factoring

Public Key Private Key
(N=pg.e) (p,q,d=e""mod (p—1)(g 1))

If two RSA moduli share a common factor,

N1 = pgn N> = pq»

RSA and factoring

Public Key Private Key
(N=pg.e) (p,q,d=e""mod (p—1)(g 1))

If two RSA moduli share a common factor,

N1 = pgn N> = pq»

gcd(Ny,N) =p

You can factor both keys with GCD algorithm.

Time to factor Time to calculate GCD
768-bit RSA modulus: for 1024-bit RSA moduli:
2.5 calendar years 15us

[Kleinjung et al. 2010]

Should we expect to find prime collisions in the wild?

Experiment: Compute GCD of each pair of M RSA moduli
randomly chosen from P primes.

What should happen? Nothing.

Should we expect to find prime collisions in the wild?

Experiment: Compute GCD of each pair of M RSA moduli
randomly chosen from P primes.

What should happen? Nothing.

Prime Number Theorem: Birthday bound:
~ 10"9 512-bit primes Pr[nontrivial gcd] ~ 1—e~2M°/P

Earth's population #atoms in Earth #atoms in universe

[

| |
1 1620 1640 1660 1080 10100
#moduli M

Ju—y
T

()
T

P[nontrivial ged]

What happened when we GCDed RSA keys in 2012?
Computed private keys for

e 64,081 HTTPS servers (0.50%).
e 2 459 SSH servers (0.03%).

e 2 PGP users (and a few hundred invalid keys).

What happened when we GCDed RSA keys in 2012?
Computed private keys for

e 64,081 HTTPS servers (0.50%).
e 2 459 SSH servers (0.03%).

e 2 PGP users (and a few hundred invalid keys).

What has happened since?

¢ 103 Taiwanese citizen smart card keys [Bernstein, Chang,
Cheng, Chou, Heninger, Lange, van Someren 2013]

e 90 export-grade HTTPS keys.

[Albrecht, Papini, Paterson, Villanueva-Polanco 2015]

® 313,330 HTTPS, SSH, IMAPS, POP3S, SMTPS keys
[Hastings Fried Heninger 2016]

e 3,337 Tor relay RSA keys.
[Kadianakis, Roberts, Roberts, Winter 2017]

Widespread RNG failures on low resource devices

We accidentally found multiple independent cascading PRNG
failures.

Factor #1: Weak keys generated by low resource devices
(> 50 manufacturers).

1. Linux PRNG inputs: keyboard, mouse, disk
2. OpenSSL inputs: time, pid, OS PRNG

3. Headless or embedded devices lack these
entropy sources.

Factor #2: Boot-time entropy hole on Linux PRNG

® Devices automatically generated keys on first boot.
® Linux PRNG had not yet been seeded when queried by OpenSSL.
® Fixed since July 2012.

Follow-up study: Six years of factoring keys

Question: Do vendors actually fix flaws after vulnerability disclosure?
e 65 million distinct HTTPS certificates : 2.2% vulnerable
e 1.5 billion HTTPS host records : 0.19% vulnerable

EFF P&Q Ecosystem Rapid7 Censys
I

40M <1
e
10M o

) I I T

s

Total

0 M | | | | | | |

80K T T T T T T T
60K = -~
40K | « v
20K | .

OK — | | | | | | |

\

Vulnerable

N0 AN Wb A
Q’\\fk%\@ \0\790600 >

Juniper
SRX Series Service Gateways (SRX100, SRX110, SRX210, SRX220, SRX240, SRX550,
SRX650), LN1000 Mobile Secure Router

e Security advisorie in April, July 2012
e Majority of factored keys in 2012 were Juniper hosts
e Weird behavior in April 2014

EFF P&Q Ecosystem Rapid7 Censys

et
80K | Total —— wess®™"" .
L] e T)
9 6OK| . VN e
8
T AR Uirerabl |
ner °
20K7 uinera f\._—-_l B
.- R E——
0K -

Q Q Q
RS P RS o PP

Juniper
SRX Series Service Gateways (SRX100, SRX110, SRX210, SRX220, SRX240, SRX550,
SRX650), LN1000 Mobile Secure Router

¢ 30,000 Juniper-fingerprinted hosts (9000 vulnerable)
came offline after Heartbleed

¢ |Ps do not reappear in later scans: TLS disabled, scans
blocked, devices offline?

EEF P&Q Ecosystem Rapid7 Censys

@ o%%ed
80K | Total —— eee*™™ .
L e 0
9 60K| . . A et T
3 40K < Heartbleed

T - . -
ok | VuInerabI.e \. e o |

L] R B

0K \ e \ \ \ - & \

OO N (b A O WO
N NN
< h’» RS o 0P S

Huawei

¢ Introduced vulnerability in 2014

e Security advisory published Aug 2016

EFF P&Q Ecosystem Rapid7 Censys
. 607000 B | | | ™ I I ’."\
£ 40,000 | -
2 20,000
0 oo s . 0 ® M#m.-d ! |
% 3,000 [I I I I I I }‘\
g 2,000 + -
2 1,000/ -
3 o=« . . S—_al |
:9\,99\6 ,’LQ"\\ ,’)90 m@b(: S : S
SVRY” A7 P % SV

Discussion and Lessons

e Widespread vulnerabilities were hiding in plain sight for
years.

e Difficult to eradicate vulnerabilities from fundamental
infrastructure.

e Disclosure process flawed: > 50% of vendors never
responded.

e Patching rates are low to nonexistent for networked
devices.

® Big gap between theory and practice.

® Theoretical models did not reflect reality.
® Practitioners have incorrect received knowledge about
RNG threats.

Disaster 3: Netscape SSL RNG [Goldberg Wagner 1996]
Underlying cause: Seeding PRNG with insufficient entropy.

global variable seed;

RNG_CreateContext ()
(seconds, microseconds) = time of day; /* Time elapsed since 1970 %/
pid = process ID; ppid = parent process ID;
a = mklcpr(microseconds);
b = mklcpr(pid + seconds + (ppid << 12));
seed = MD5(a, b);

mklcpr(x) /* not cryptographically significant; shown for completeness */
return ((OxDEECE66D * x + 0x2BBB62DC) >> 1);

RNG_GenerateRandomBytes ()
x = MD5(seed);
seed = seed + 1;
return x;

global variable challenge, secret_key;

create_key()
RNG_CreateContext () ;

challenge = RNG_GenerateRandomBytes();
secret_key = RNG_GenerateRandomBytes();

Disaster 4: ANSI X9.31
and

nd the DUHK attack

Practical state recovery attacks against legacy RNG
implementations Shaanan Cohney, Matthew D. Green, Nadia
Heninger. 2017.

Underlying cause: Seeding invertible PRNG with
insufficient entropy.

The ANSI X9.31 PRNG

e On each iteration, mixes state V;_; with timestamp T;.
¢ Produces output block R; and new state V;.

e Uses block cipher as a mixing function.

T, - AESK »O— AESKk Vi

Vie1 ~b— AESK - R;

ANSI X9.31 PRNG History

e 1985: DES-based PRNG standardized in ANSI X9.17

e 1992: Adopted as a FIPS standard

® 1994: Included on list of approved RNGs in FIPS 140-1
e 1998: Variant using 3DES standardized in ANSI X9.31
e 1998: Kelsey et al.: state recovery if key known

e 2004: ANSI X9.31 RNG included in FIPS 186-2

e 2005: AES-based variant published by NIST and
included on FIPS 140-2 approved RNGs

e 2011: FIPS deprecates ANSI X9.31 design
e 2016: ANSI X9.31 RNG removed from FIPS 140-2

X9.31 state recovery from a known key
[Kelsey, Schneier, Wagner, Hall 1998]

If key K used with block cipher is known, can recover state
from output by brute forcing timestamp.

AESk

AESK

NIST ANSI X9.31 RNG standardization failure

"For AES 128-bit key, let *K be a 128 bit key."

"This *K is reserved only for the generation of pseudo
random numbers."

e Standard did not specify key should not be hard-coded.

Using FIPS 140 to find broken implementations

e FIPS 140 requires vendors to document key generation
and storage policies in detail.

e We searched FIPS security policies to find documented
hard-coded X9.31 keys.

| 127 | 149 12
No information | Not vulnerable | Vulnerable
0 50 100 150 200 250 300

"Compiled into binary" "statically stored in the code" "Hard Coded"
"generated external to the module" "Stored in flash" "Static key, Stored in
the firmware" "Entered in factory" "loaded at factory" "Static" "Embedded
in FLASH" "Injected During Manufacture" "Hard-coded in the module"

Passive RNG state recovery in the IPsec protocol

Targeting Fortigate VPNs

random rg, 8¢

Y

random ry,, g°

A

Auth(rq, g9 1y, 8°)

>
>

Auth(rq, 8% rp, 8")

>
>

k = KDF(g®) AES,(m)

k = KDF(g®)

>

>

e Need raw PRNG outputs for state recovery attack.

e |dea: Use the random nonces.

e After state recovered, then recover secret exponents.

Passive decryption for Fortigate IPsec VPNs

FortiOS v4 hard-coded NIST test vector key

22> work brute-forcing timestamps for state recovery

Performed internet-wide scans and successfully
recovered private keys against hosts in the wild.

ANSI X9.31 RNG no longer included in FortiOS v5;
FortiOS v4 patched since November 2016

Discussion and Lessons

e Impact of academic work not always noticed in real
world.

e This is not a “NOBUS"” backdoor because it is symmetric.

e Weak design continued to be used long after better
constructions were known.

e This type of flaw may explain some of NSA's passive VPN
decryption capabilities.

e Disclosure process is flawed: 10 of 12 vendors we
contacted never responded.

e FIPS security validation does not imply a security audit.

Defensive work

e Formal verification can help prove that designs match
security model.

e Multiple (recent!) security models for real-world PRNGs.
(e.g. [Dodis et al. 2013])

o New attacks introduce new threat models.

e |s it possible to detect (flawed) algorithms in a binary?

Disaster 5: Dual EC DRBG

On the Practical Exploitability of Dual EC in TLS
Implementations Checkoway, Fredrikson, Niederhagen,
Everspaugh, Green, Lange, Ristenpart, Bernstein,
Maskiewicz, Shacham. Usenix Security 2014.

Underlying cause: Backdoored PRNG design.

Dual EC DRBG

Lo ronf Brract
t

Q Pseudorandom
Bits

[Optional]
additional input
0

i
If additional input = Null

Figure 13: Dual_EC_DRBG

Parameters: Pre-specified elliptic curve points P and Q.
Seed: 32-byte integer s

e State: x-coordinate of point sP. (¢(x(sP)) above.)

Update: t = s® optional additional input. State s = x(tP).

Output: At state s, compute x-coordinate of point x(sQ),
discard top 2 bytes, output 30 bytes.

Dual EC DRBG History

e Early 2000s: Created by the NSA and pushed towards
standardization

e 2004: Published as part of ANSI X9.82 part 3 draft
e 2004: RSA makes Dual EC the default PRNG in BSAFE
e 2005: Standardized in NIST SP 800-90 draft

e 2007: Shumow and Ferguson demonstrate theoretical
backdoor

e 2013: Snowden documents lead to renewed interest in
Dual EC

e 2014: Practical attacks on TLS using Dual EC
demonstrated

e 2015: NIST removes Dual EC from list of approved
PRNGs

Shumow and Ferguson 2007

[Optional]
additional input

0 &) for s ef et
t f

P Q Pseudorandom
! .
If additionsl Input = Null Bits

Figure 13: Dual_EC_DRBG

1. Assume attacker controls standard and constructs
points with known relationship P = dQ.

2. Attacker gets 30 bytes of x-coordinate of sQ. Attacker
brute forces 2'® MSBs, gets 2'7 possible y-coordinates,
ends up with 2'> candidates for sQ.

3. For each candidate sQ attacker computes dsQ = sP and
compares to next output.

September 2013: NSA Bullrun in NY Times

(TSHSIVREL TO USA, FVEY) Insert vulnerabilities into commercial encryption systems, IT systems,
networks, and endpoint communications devices used by targets.

(TS/SIHREL TO USA, FYEY) Collect target network data and metadata via cooperative network carriers
and/or incressed control over core networks,

(TSHSIREL TOUSA, FVEY) Leverage commercial capabilities wo remotely deliver or recelve information
Lo and from target endpoints.

(TSHSIVREL TO USA, FYEY) Exploit foreign trusted compuling platforms and technologies.
(TSHSIVREL TO USA, FVEY) Influence policies, standards and specification for commercial public key
technologies.

{TS/ST/REL TO USA, FVEY) Make specific and aggressive investments to facilitate the development of
a robust exploitation capability against Next-Generation Wircless (NGW) communications.

Dual EC Attack Complexity in TLS Implementations
Checkoway et al. 2014

Table 1: Summary of our results for Dual EC using NIST P-256.

Default Cache Ext. Bytes per Adin Attack Time

Library PRNG Output Random Session Entropy Complexity (minutes)

BSAFE-C v1.1 v v el 31-60 — 30-2%(C, +¢y) 0.04
BSAFE-Java v1.1 v i 28 — 22Y(C,+5¢)) 63.96
SChannel If 28 — 21(C,+4Cy) 62.97
SChannel II¥ 30 — 23(c, +¢p) +2'7(5¢y) 182.64
OpenSSL-fixed I 32 20 2B +3¢) +220(2cy) 0.02
OpenSSL-fixed I11** 32 35+k 215(C,+3C)+2%k(2c,) 288332

* Assuming process ID and counter known. = Assuming 15 bits of entropy in process ID, maximum counter of 2%, See Section 4.3.
T With a library—compile-time flag. # Versions tested: Windows 7 64-bit Service Pack 1 and Windows Server 2010 R2.

Disaster 6: The Juniper Dual EC
Incident

A Systematic Analysis of the Juniper Dual EC Incident
Checkoway, Maskiewicz, Garman, Fried, Cohney, Green,
Heninger, Weinmann, Rescorla, Shacham. CCS 2016.

Underlying cause: Backdoored PRNG design.

the grugq l"fiFauow --_.I
@thegrugq N

Woah! Juniper discovers a backdoor to
decrypt VPN traffic (and remote admin) has
been inserted into their OS source

Important Announcement about ScreenOS®

IMPORTANT JUNIFER SECURITY ANNOUNCEMENT
EJ CUSTOMER UPDATE: DECEMBER 20, 2015 Administrative
Access (CVE-2015-7755) only affects ScreenOS 6.3.0r17 through

forums.juniper.net

S

Diff of VPN code change

5AC63!8AA3A93E7B3EBBD557—C53B@F63BCE3C3E27D2604B

6B17D1F2E12C4247F8BCEGES563A440F277037D812DEB33A0
FFFFFFFFO@0Q0@RFFFFFFFFFFFFFFFFBCEGFAADA7179E84F3B9CAC2FC632551
bad: 958532QEEAF81044F20D55030A035B11BECE81C785E6C333E4A8A131F6578107
good: 2c55e5e45edf713dc43475effeB8813a60326a64d9ba3d2e39cb639b@f3boad10
nist:c97445f45cdef9f0d3e05e1e585fc297235b82b5be8ff3efcab7c59852018192

Juniper cascaded Dual EC with ANSI X9.31

e ScreenOS only FIPS validated for ANSI X9.31, not Dual EC
¢ Juniper used non-default points for Dual EC

The following product families do utilize Dual_EC_DRBG, but do not use the pre-defined points cited by NIST:
1. ScreenOS*

* ScreenOS does make use of the Dual_EC_DRBG standard, but is designed to not use Dual_EC_DRBG as its primary
random number generator. ScreenOS uses it in a way that should not be vulnerable to the possible issue that has been
brought to light. Instead of using the NIST recommended curve points it uses self-generated basis points and then takes
the output as an input to FIPS/ANSI X.9.31 PRNG, which is the random number generator used in ScreenOS
cryptographic operations.

ScreenOS RNG implementation

void prng_generate(void) {
int time[2];
time[0] = 0;
time[1] = get_cycles();
prng_output_index = 0;
++blocks_generated_since_reseed;
if (!one_stage_rng())
prog_reseed() ;
for (; prng_output_index <= 0x1F; prng_output_index += 8) {
// FIPS checks removed for clarity
x9_31_generate_block(time, prng_seed, prng_key, prng_block);
// FIPS checks removed for clarity
memcpy (&prng_temporary [prng_output_index], prng_block, 8);
}
}

void prng_reseed(void) {
blocks_generated_since_reseed = 0;
if (dualec_generate(prng_temporary, 32) != 32)
error_handler ("FIPS ERROR: PRNG failure, unable to reseed\n", 11);
memcpy (prng_seed, prng_temporary, 8);
prng_output_index = 8;
memcpy (prng_key, &prng_temporary[prng_output_index], 24);
prng_output_index = 32;

ScreenOS RNG implementation

void prng_generate(void) {
int time[2];
time[0] = 0;
time[1] = get_cycles();
prng_output_index = 0;
++blocks_generated_since_reseed;
if (!one_stage_rng())
prng_reseed(); // conditional reseed
for (; prng_output_index <= 0x1F; prng_output_index += 8) {
// FIPS checks removed for clarity
x9_31_generate_block(time, prng_seed, prng_key, prng_block);
// FIPS checks removed for clarity
memcpy (&prng_temporary [prng_output_index], prng_block, 8);
}
}

void prng_reseed(void) {
blocks_generated_since_reseed = 0;
if (dualec_generate(prng_temporary, 32) != 32)
error_handler ("FIPS ERROR: PRNG failure, unable to reseed\n", 11);
memcpy (prng_seed, prng_temporary, 8);
prng_output_index = 8;
memcpy (prng_key, &prng_temporary[prng_output_index], 24);
prng_output_index = 32;

ScreenOS RNG implementation

void prng_generate(void) {
int time[2];
time[0] = 0;
time[1] = get_cycles();
prng_output_index = 0;
++blocks_generated_since_reseed;
if (!one_stage_rng())
prog_reseed() ;
for (; prng_output_index <= 0x1F; prng_output_index += 8) {
// FIPS checks removed for clarity
x9_31_generate_block(time, prng_seed, prng_key, prng_block);
// FIPS checks removed for clarity
memcpy (&prng_temporary [prng_output_index], prng_block, 8);
}
}

void prng_reseed(void) {
blocks_generated_since_reseed = 0;
if (dualec_generate(prng_temporary, 32) != 32) // generate Dual EC output
error_handler ("FIPS ERROR: PRNG failure, unable to reseed\n", 11);
memcpy (prng_seed, prng_temporary, 8);
prng_output_index = 8;
memcpy (prng_key, &prng_temporary[prng_output_index], 24); // copy output
prng_output_index = 32;

ScreenOS RNG implementation

void prng_generate(void) {
int time[2];
time[0] = 0;
time[1] = get_cycles();
prng_output_index = 0;
++blocks_generated_since_reseed;
if (!one_stage_rng())
prog_reseed() ;
for (; prng_output_index <= 0x1F; prng_output_index += 8) {
// FIPS checks removed for clarity
x9_31_generate_block(time, prng_seed, prng_key, prng_block); // gen output
// FIPS checks removed for clarity
memcpy (&prng_temporary [prng_output_index], prng_block, 8);
}
}

void prng_reseed(void) {
blocks_generated_since_reseed = 0;
if (dualec_generate(prng_temporary, 32) != 32)
error_handler ("FIPS ERROR: PRNG failure, unable to reseed\n", 11);
memcpy (prng_seed, prng_temporary, 8);
prng_output_index = 8;
memcpy (prng_key, &prng_temporary[prng_output_index], 24);
prng_output_index = 32;

ScreenOS RNG implementation

void prng_generate(void) {
int time[2];

time[0] = 0;

time[1] = get_cycles();

prng_output_index = 0; // global variable
++blocks_generated_since_reseed;

if (!one_stage_rng()) // always true

prog_reseed() ;

for (; prng_output_index <= 0x1F; prng_output_index += 8) {
// FIPS checks removed for clarity
x9_31_generate_block(time, prng_seed, prng_key, prng_block);
// FIPS checks removed for clarity
memcpy (&prng_temporary [prng_output_index], prng_block, 8);

}

}

void prng_reseed(void) {
blocks_generated_since_reseed = 0;
if (dualec_generate(prng_temporary, 32) != 32)
error_handler ("FIPS ERROR: PRNG failure, unable to reseed\n", 11);
memcpy (prng_seed, prng_temporary, 8);
prng_output_index = 8;
memcpy (prng_key, &prng_temporary[prng_output_index], 24);
prng_output_index = 32;

ScreenOS RNG implementation

void prng_generate(void) {
int time[2];
time[0] = 0;
time[1] = get_cycles();
prng_output_index = 0;
++blocks_generated_since_reseed;
if (!one_stage_rng())
prog_reseed() ;
for (; prng_output_index <= 0x1F; prng_output_index += 8) {
// FIPS checks removed for clarity
x9_31_generate_block(time, prng_seed, prng_key, prng_block);
// FIPS checks removed for clarity
memcpy (&prng_temporary [prng_output_index], prng_block, 8);
}
}

void prng_reseed(void) {
blocks_generated_since_reseed = 0;
if (dualec_generate(prng_temporary, 32) != 32) // global variable

error_handler ("FIPS ERROR: PRNG failure, unable to reseed\n", 11);

memcpy (prng_seed, prng_temporary, 8);
prng_output_index = 8;
memcpy (prng_key, &prng_temporary[prng_output_index], 24);
prng_output_index = 32; // set to 32

ScreenOS RNG implementation

void prng_generate(void) {
int time[2];
time[0] = 0;
time[1] = get_cycles();
prng_output_index = 0;
++blocks_generated_since_reseed;
if (!one_stage_rng())
prog_reseed() ;
for (; prng_output_index <= 0x1F; prng_output_index += 8) { // never runs
// FIPS checks removed for clarity
x9_31_generate_block(time, prng_seed, prng_key, prng_block);
// FIPS checks removed for clarity
memcpy (&prng_temporary [prng_output_index], prng_block, 8); // reuses buffer
}
}

void prng_reseed(void) {
blocks_generated_since_reseed = 0;
if (dualec_generate(prng_temporary, 32) != 32)
error_handler ("FIPS ERROR: PRNG failure, unable to reseed\n", 11);
memcpy (prng_seed, prng_temporary, 8);
prng_output_index = 8;
memcpy (prng_key, &prng_temporary[prng_output_index], 24);
prng_output_index = 32;

ScreenOS RNG implementation

void prng_generate(void) {
int time[2];
time[0] = 0;
time[1] = get_cycles();
prng_output_index = 0;
++blocks_generated_since_reseed;
if (!one_stage_rng())
prog_reseed() ;
for (; prng_output_index <= 0x1F; prng_output_index += 8) {
// FIPS checks removed for clarity
x9_31_generate_block(time, prng_seed, prng_key, prng_block);
// FIPS checks removed for clarity
memcpy (&prng_temporary [prng_output_index], prng_block, 8);
} // output is raw Dual EC output!
}

void prng_reseed(void) {
blocks_generated_since_reseed = 0;
if (dualec_generate(prng_temporary, 32) != 32)
error_handler ("FIPS ERROR: PRNG failure, unable to reseed\n", 11);
memcpy (prng_seed, prng_temporary, 8);
prng_output_index = 8;
memcpy (prng_key, &prng_temporary[prng_output_index], 24);
prng_output_index = 32;

Passive state recovery in ScreenQS IPsec

random rg, g9

Y

random ry,, g°

A

Auth(rq, g% 1y, &%)
Auth(rg, g%, rp, &%)

>
>

>
>

k = KDF(g™) AES,(m) k = KDF(g™)

>
>

Use random nonces to carry out state recovery attack.
ScreenOS used 32-byte nonce — efficient attack.
After state recovered, then recover secret exponents.
We demonstrated attack with our own backdoored P, Q.

ScreenQS Version History

Screen0S 6.1.0r7 ScreenOS 6.2.0r0 (2008)
e ANSI X9.31 e Dual EC — ANSI X9.31
e Seeded by interrupts e Reseed bug exposes raw Dual EC
e Reseed every 10k calls e Reseed every call
e 20-byte IKE nonces ® Nonces generated before keys

32-byte IKE nonces

e Attacker changed constantin 6.2.0r15 (2012).
e But passive decryption enabled in earlier release.

e Juniper’s "fix" was to reinstate original Q value. After our
work they removed Dual EC completely.

Discussion and Lessons

“NOBUS" backdoors can be repurposed.

Don't know how Juniper’s parameters were generated,
or who wrote their Dual EC cascade.

Juniper wasn't certified for Dual EC, so it wasn't on the
radar of researchers who looked for vulnerable
implementations. Who else are we missing?

Could we detect both implementations and bugs
automatically?

How do we prevent backdoors in standards?

How to generate random numbers

¢ Not everything is broken! Other RNG constructions in
NIST SP 800-90a are mostly fine if implemented
correctly and securely!

¢ Intel RDRAND, RDSEED provide fast hardware RNG
interfaces. And are probably not backdoored.

¢ Linux getrandom() provides a better interface than
urandom Of random.

